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Very often in hydrodynamics, the description of the complexity of flows can only be achieved by the use of
simple models. These models, obtained usually by phenomenological arguments, need in general the knowl-
edge of some parameters. The challenge is then to determine the values of these parameters from experiments.
Here, our concern is the description of a coupled wakes experiment using a complex Ginzburg-Landau equa-
tion (GLE). Our analysis is based on a proper decomposition of experimental spatiotemporal chaotic flow
fields, followed by a projection of the GLE onto the proper directions. We show that our method is able to
recover the parameters of the model which permit us to reconstruct the spatiotemporal chaos observed in the
experiment. As it is based on a general projection principle, this method is general and could be applied to
other systemd.S1063-651X98)51611-X]

PACS numbds): 47.27.Vf, 05.45+b, 47.35:+i, 47.52+]

INTRODUCTION then be modeled by a Stuart-Landau equafiésY]. Thus,
the coupled oscillators model that can be used to study the
It is known from experimental studig¢4] and numerical flow downstream the row of cylinders is a discrete version of
simulationg[2] that the wakes of bluff bodies placed side by the generalized Ginzburg-Landau equati®LE) [8,4],
side can interact and create a large variety of phenomena. In
particular, the acoustic mode where all the wakes oscillate in  diAj(t)=(a,+ja;)Aj(t) + (9, +jgi) [Ai+1(t)
phase, and the optical mode where all the wakes oscillate in )
phase opposition, are obtained for, respectively, strong and A1 (0= 2A0]= (L + DA PA(D).
weak coupling[3]. In the case of interest here, we analyze @
the space-time chaos created by 16 wakes in interaction in
the narrow window of intermediate range of coupling. This The associated boundary conditions akg(t)=AAt)
spatiotemporal chaos is characterized by randomly generated0, whereA;(t) is the complex amplitude of the wake of
space-time dislocations which are associated with wakes exadexi. Note that it has been shown by a previous experi-
tinctions or amplitude hole§4,5]. Figure 1(top) presents a ment realized on a pair of wak¢8] that the wakes are de-
shapshot of the coupled wakes that are visualized by dye
injection through small holes drilled in the middle plane of
each cylinder. Amplitude holes and phase jumpsmoére
particularly visible on this imagéwake numbers 6 and 15
The cylinders possess a length of 200 mm and a diameter of
2 mm. They are rigidly maintained in the wall of a water
tunnel. The distance separating each cylinder axes is equal to
four times their diameter. The experiments are run at a Rey-
nolds number of 80. They are recorded via a standard video
system and a frame grabber driven by a microcomputer. In
particular, we can record a unique video line at the video
frequency(25 H2) and gather these lines to build space-time
diagrams(452 time steps 16 space positionghat represent
the dynamics of the family of wakes. The acquisition line is
situated 12 mm downstream the row of cylinders and the
displacements of the dye streaks are recorded as a function of
time. The amplitude of the signal is normalized by the stan-
dard deviation of the total signal, and the time unit is 0.04 s.
Figure 1(bottom shows such an observation window where
the intermittency of amplitude holes is visible.
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DATA ANALYSIS
, . . FIG. 1. Snapshot of the 16 coupled wakigsp). Space-time
The Benard—von Karman wake of a cylinder placed in a giagram(bottom, time is running downward.

flow appears via a Hopf bifurcation. The oscillating flow can
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FIG. 2. Comparison of convergence results between the direct

method(—) and the dispersion relation methos). FIG. 3. Three-dimensional representation of the maftjxcal-

culated from the experimental data.

coupled when the distance separated their axes, is larger than As the GLE is a complex model, the first step of the
six times their diameter. This is the reason why an interacmethod consists of complexifying the experimental data.
tion at first neighbors only can be considered. This is obtained by a classical procedure, using the Hilbert
The three complex coefficients g, andl, appearing in  Transform. Then, thé&l=16 proper modes of the complex
the GLE(1), determine the wakes dynamics and their recov-ield A, = A;(t) are calculated by diagonalization of the tem-

ering from experimental spatiotemporal chaotic measureporal correlation (16 16) matrix and by the use of the pro-
ments represents a real challenge of data analysis. In thjgction relation[10]

study, we develop a technique proposed[bjthat permits

us to measure the values taken by these parameters. Two —
methods based on the biorthogonal decompositid) will An:kz_:l ay () (i), (2
be used. The first onécalled the direct methgdanalyzes B

directly the spatiotemporal data series similarly to what wagyhere the overbar designs the complex conjugatignthe
done on the same problem[ibl] or in a surface wave study emporal mode, and, the spatial mode associated with the
[13]. As we will see further, this direct method suffers a lot eigenvaluew, . According to the time, space, and nonlinear

from the presence of noise. _ operators of Eq(1), the following (452 16) matrices are
On the contrary, the second method is based on the Chaﬁ'reviously built fromA:

acterization of a generalized dispersion relation defined by a

N

Galerkin projection as defined [15]. We will focus here on Acigi— Ay

this second method, which permits a better reconstruction of Dy =T At

the data. To illustrate this point, we present in.Figa com-

parison of the determmapon of the real part of the linear Ag=Agi1+Ai_1—2A,
coefficienta, from synthetic data. In this case, the true value

of a, is equal to 1. A numerical simulation of the GLE is Ny =|Ail?Ay

realized and a 10% Gaussian noise is added, simulating an

eventual experimental noise. As can be seen, the diresthereAt is the time unit given by the video acquisition rate.
method, which essentially consists of an inversion problemWhen Eq.(1) is projected onto the proper orthogonal decom-
cannot recover the exact value of the parameter. The olposition modes, the following (2616) matrices appear:
served convergence to a false asymptotic value with the in-

creasing number of windows is due to the presence of noise k= ((D®Pi)* #)*,  Lia=(AqPi)* Pud*,

and may explain the difficulties encountered in previous _ N . _ . .
studies[13]. The second method, whose results are also K= ((AgPi)* )™, Tg=((NgP;)* ¢y ™,

shown in Fig. 2, is presented in the following. Although it where the inner product is the usual product of complex ma-

possesses a less good rate of convergence, it predicts the R as with the complex conjugate of the transpose of any
\égl()gefof :Ee zgiraTetert'hWICtthﬁn accuracg of 59;(_stead Ofb matrix noted by an asterisk. The dispersion relation linking
0 for the direct methg € same observation can D€ ., ,qaq andk can then be written as

made on the determination of the other parameters and thus

definitively sets our choice on the dispersion relation Qu=aly+gx—I1Ty. 3
method. Moreover, it needs a smaller volume of data and

consequently is much faster than the direct one. Figure 3 presents the absolute value of the elements of the
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I R ST R TN o— 3 R lution [13]. This least-square method consists of the repre-
o ! ! sentation of data on maximum correlation directions. The
grees 20 examination of the relative standard deviation associated
s b8
.3 8 15 with these directions allows us to withdraw uncorrelated data
o e [15], which are essentially due to the experimental and video
r_gs Y segete iy . data processing noise. Here the relative standard deviation
e e Beee corresponding to these irrelevant data is about 0.14%. The
e coefficientsa, |, andg take the following values:
-15
2 4 8[ 12 16 3 4 sl 12 18 a,= _0-0534(071]’ ai:0-474-{(t)71]:
FIG. 4. Experimental data: Evolution versus indeaf the di- g,=—0.239¢(t) 1], g;=—2.7018(t)" 1],
agonal elements of the matric€s L, «, andI" (arbitrary units.
1
e
matrix () that are calculated here for one experimental ob- g o8 ;Efs
servation window of 18452 data points. As can be seen, B :
the matrix() is almost diagonal. The same observation being | *% . :
. . T M K 45l + .
made on the other matrices, the only modesl| will be odl Ty "
considered in the following. e, -2
A good representation of the spatiotemporal dynamics is %3  *+¢ :, 28]
achieved when considering these diagonal elements as a o 8**+1-2++ d - .
function of the mode indek. These “spectra” represent in I I
fact the signature of the experimental spatiotemporal signals. . 10
Therefore, we emphasize the fact that, contrary to what was ; ETEA .
done in[11], our intention is not to reconstruct precisely a R i
particular window among the 50 which are analyzed, but to St o ¥
obtain the parameters of the GLE which will permit us to 215 , & , e
recover the “spectra.” Figure 4 gives the shape of these 4 y,
spectra for five superimposed different experimental obser- | B
vation windows. Note that, as mentioned 5], the matrixx . TP
is self-adjoint and the imaginary parts of its diagonal ele- R s, 12 1 L 8 12 e
ments are null. 10 10
Therefore, the determination of the coefficieatsg, and AN £ s .
| lies on the inversion of this dispersion relati(8), where ;: ive , Ciat i,
the matriced), L, «, andI" are obtained from experimental A | PTTEIE
data. The method had been first successfully tested on simu-T',| « Lo *t
lated data processed by the GLE, with or without added ' st ]
noise. Then and to annihilate the experimental noise, we ana- 1
lyze statistically about 50 windows of 45216 data points. -1
Moreover, to decrease the influence of experimental noise, %2 B 1z 18 T g 1z 18

the last four modes, where the signal to noise ratio is ob-
served to be less than 50%, will also be neglected in the FIG. 6. Evolution vs indexX of the diagonal elements of the

inversion process. matricesQ,L, «,I" obtained from five windows of the 16 simulated
The parameters are obtained by a normal equations resoeupled wakes with the coefficients obtained from the experiment.
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1,=0.0567(t) " Y(A)"2], I;=—0.079%(t) (A 2]. one 0.13:0.02, calculated from the numerical simulation.
To analyze more specifically the chaotic experimental be-
In fact, the relevant parameters of K@) are normalized havior, we compute and present in Fig. 6 the “spectra’ of
and deduced from the latte=g,/a,, ¢;=0;/g, andC;  five numerical simulations using the experimental coeffi-
=l;/l;. They can be compared to the ones determined ifjents with different initial conditions. It can be observed
[14] and[12], that they essentially overlap the experimental “spectra” and
that their global shapes are recovered. In particular, a good
7=4.48, ¢,=11.27, ¢,;=—1.40. agreemen% is exhibitgd for small indexed m%des that arg the

Whereas the parametes takes exactly the value obtained in most energetic ones. Also, we show here that the remained

[14], there are noticeable differences with the results pre€XPerimental noise appears as a deviation in the “spectra.”
sented in(12]. This is clearly visible for(), andI';, especially for the less

energetic modegfor large indices

We conclude that the experimental and the computed spa-
tiotemporal fields are nearly identical, their “spectral” sig-

Using these values, the GLE model is simulated with amatures being the same. This proves that our inversion
Euler integration scheme and shows in Fig. 5, a good agreenethod, based on a biorthogonal decomposition applied in
ment with the observed spatiotemporal chaotic behavior. Ithe proper mode spadghe dispersion relatignis able to
particular, the extinctions of oscillators are recovered. Tarecover the values of the parameters of the model. As it uses
obtain a crude comparison between the simulation and the general projection procedure it can be implemented on
experiment, the largest positive Lyapunov exponent can bether chaotic extended systems and associated models and
estimated in each case. The experimental one is equal wonsequently should lead to better analyses of experimental
0.17+0.02, which can be compared to the slightly smallerobservations of space-time chaos.
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