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Biorthogonal decomposition analysis and reconstruction of spatiotemporal chaos generated
by coupled wakes
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Very often in hydrodynamics, the description of the complexity of flows can only be achieved by the use of
simple models. These models, obtained usually by phenomenological arguments, need in general the knowl-
edge of some parameters. The challenge is then to determine the values of these parameters from experiments.
Here, our concern is the description of a coupled wakes experiment using a complex Ginzburg-Landau equa-
tion ~GLE!. Our analysis is based on a proper decomposition of experimental spatiotemporal chaotic flow
fields, followed by a projection of the GLE onto the proper directions. We show that our method is able to
recover the parameters of the model which permit us to reconstruct the spatiotemporal chaos observed in the
experiment. As it is based on a general projection principle, this method is general and could be applied to
other systems.@S1063-651X~98!51611-X#

PACS number~s!: 47.27.Vf, 05.45.1b, 47.35.1i, 47.52.1j
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INTRODUCTION

It is known from experimental studies@1# and numerical
simulations@2# that the wakes of bluff bodies placed side
side can interact and create a large variety of phenomen
particular, the acoustic mode where all the wakes oscillat
phase, and the optical mode where all the wakes oscillat
phase opposition, are obtained for, respectively, strong
weak coupling@3#. In the case of interest here, we analy
the space-time chaos created by 16 wakes in interactio
the narrow window of intermediate range of coupling. Th
spatiotemporal chaos is characterized by randomly gener
space-time dislocations which are associated with wakes
tinctions or amplitude holes@4,5#. Figure 1~top! presents a
snapshot of the coupled wakes that are visualized by
injection through small holes drilled in the middle plane
each cylinder. Amplitude holes and phase jumps ofp are
particularly visible on this image~wake numbers 6 and 15!.
The cylinders possess a length of 200 mm and a diamete
2 mm. They are rigidly maintained in the wall of a wat
tunnel. The distance separating each cylinder axes is equ
four times their diameter. The experiments are run at a R
nolds number of 80. They are recorded via a standard vi
system and a frame grabber driven by a microcomputer
particular, we can record a unique video line at the vid
frequency~25 Hz! and gather these lines to build space-tim
diagrams~452 time steps316 space positions! that represent
the dynamics of the family of wakes. The acquisition line
situated 12 mm downstream the row of cylinders and
displacements of the dye streaks are recorded as a functio
time. The amplitude of the signal is normalized by the st
dard deviation of the total signal, and the time unit is 0.04
Figure 1~bottom! shows such an observation window whe
the intermittency of amplitude holes is visible.

DATA ANALYSIS

The Bénard–von Karman wake of a cylinder placed in
flow appears via a Hopf bifurcation. The oscillating flow c
PRE 581063-651X/98/58~5!/5233~4!/$15.00
In
in
in

nd

in

ed
x-

e

of

l to
y-
o

In
o

e
of
-
.

then be modeled by a Stuart-Landau equation@6,7#. Thus,
the coupled oscillators model that can be used to study
flow downstream the row of cylinders is a discrete version
the generalized Ginzburg-Landau equation~GLE! @8,4#,

dtAi~ t !5~ar1 jai !Ai~ t !1~gr1 jgi !@Ai 11~ t !

1Ai 21~ t !22Ai~ t !#2~ l r1 j l i !uAi~ t !u2Ai~ t !.

~1!

The associated boundary conditions areA0(t)5A17(t)
50, whereAi(t) is the complex amplitude of the wake o
index i . Note that it has been shown by a previous expe
ment realized on a pair of wakes@9# that the wakes are de

FIG. 1. Snapshot of the 16 coupled wakes~top!. Space-time
diagram~bottom!, time is running downward.
R5233 © 1998 The American Physical Society
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coupled when the distance separated their axes, is larger
six times their diameter. This is the reason why an inter
tion at first neighbors only can be considered.

The three complex coefficientsa, g, and l , appearing in
the GLE~1!, determine the wakes dynamics and their rec
ering from experimental spatiotemporal chaotic measu
ments represents a real challenge of data analysis. In
study, we develop a technique proposed by@5# that permits
us to measure the values taken by these parameters.
methods based on the biorthogonal decomposition@10# will
be used. The first one~called the direct method! analyzes
directly the spatiotemporal data series similarly to what w
done on the same problem in@11# or in a surface wave stud
@13#. As we will see further, this direct method suffers a
from the presence of noise.

On the contrary, the second method is based on the c
acterization of a generalized dispersion relation defined b
Galerkin projection as defined in@5#. We will focus here on
this second method, which permits a better reconstructio
the data. To illustrate this point, we present in Fig. 2 a com-
parison of the determination of the real part of the line
coefficientar from synthetic data. In this case, the true val
of ar is equal to 1. A numerical simulation of the GLE
realized and a 10% Gaussian noise is added, simulatin
eventual experimental noise. As can be seen, the d
method, which essentially consists of an inversion proble
cannot recover the exact value of the parameter. The
served convergence to a false asymptotic value with the
creasing number of windows is due to the presence of n
and may explain the difficulties encountered in previo
studies @13#. The second method, whose results are a
shown in Fig. 2, is presented in the following. Although
possesses a less good rate of convergence, it predicts th
value of the parameter with an accuracy of 5%~instead of
50% for the direct method!. The same observation can b
made on the determination of the other parameters and
definitively sets our choice on the dispersion relati
method. Moreover, it needs a smaller volume of data
consequently is much faster than the direct one.

FIG. 2. Comparison of convergence results between the d
method~2! and the dispersion relation method~3!.
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As the GLE is a complex model, the first step of th
method consists of complexifying the experimental da
This is obtained by a classical procedure, using the Hilb
Transform. Then, theN516 proper modes of the comple
field Ati5Ai(t) are calculated by diagonalization of the tem
poral correlation (16316) matrix and by the use of the pro
jection relation@10#

Ati5 (
k51

N

akck~ t !f̄k~ i !, ~2!

where the overbar designs the complex conjugation,ck the
temporal mode, andfk the spatial mode associated with th
eigenvalueak . According to the time, space, and nonline
operators of Eq.~1!, the following (452316) matrices are
previously built fromA:

Dti5
At11i2Ati

Dt
,

D t i5Ati 111Ati 2122Ati ,

Nti5uAti u2Ati ,

whereDt is the time unit given by the video acquisition rat
When Eq.~1! is projected onto the proper orthogonal deco
position modes, the following (16316) matrices appear:

Vkl5„~DtiF i l !* c tk…* , Lkl5„~AtiF i l !* c tk…* ,

kkl5„~D t iF i l !* c tk…* , Gkl5„~NtiF i l !* c tk…* ,

where the inner product is the usual product of complex m
trices with the complex conjugate of the transpose of a
matrix noted by an asterisk. The dispersion relation linki
modesl andk can then be written as

Vkl5aLkl1gkkl2 lGkl . ~3!

Figure 3 presents the absolute value of the elements of

ct
FIG. 3. Three-dimensional representation of the matrixV, cal-

culated from the experimental data.
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matrix V that are calculated here for one experimental
servation window of 163452 data points. As can be see
the matrixV is almost diagonal. The same observation be
made on the other matrices, the only modesk5 l will be
considered in the following.

A good representation of the spatiotemporal dynamic
achieved when considering these diagonal elements
function of the mode indexl . These ‘‘spectra’’ represent in
fact the signature of the experimental spatiotemporal sign
Therefore, we emphasize the fact that, contrary to what
done in @11#, our intention is not to reconstruct precisely
particular window among the 50 which are analyzed, bu
obtain the parameters of the GLE which will permit us
recover the ‘‘spectra.’’ Figure 4 gives the shape of the
spectra for five superimposed different experimental ob
vation windows. Note that, as mentioned in@5#, the matrixk
is self-adjoint and the imaginary parts of its diagonal e
ments are null.

Therefore, the determination of the coefficientsa, g, and
l lies on the inversion of this dispersion relation~3!, where
the matricesV, L, k, andG are obtained from experimenta
data. The method had been first successfully tested on s
lated data processed by the GLE, with or without add
noise. Then and to annihilate the experimental noise, we
lyze statistically about 50 windows of 452316 data points.
Moreover, to decrease the influence of experimental no
the last four modes, where the signal to noise ratio is
served to be less than 50%, will also be neglected in
inversion process.

The parameters are obtained by a normal equations r

FIG. 4. Experimental data: Evolution versus indexl of the di-
agonal elements of the matricesV, L, k, andG ~arbitrary units!.
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lution @13#. This least-square method consists of the rep
sentation of data on maximum correlation directions. T
examination of the relative standard deviation associa
with these directions allows us to withdraw uncorrelated d
@15#, which are essentially due to the experimental and vid
data processing noise. Here the relative standard devia
corresponding to these irrelevant data is about 0.14%.
coefficientsa, l , andg take the following values:

ar520.0534@~ t !21#, ai50.4747@~ t !21#,

gr520.2396@~ t !21#, gi522.7018@~ t !21#,

FIG. 5. Space-time diagram of the 16 simulated coupled wa
with the coefficients obtained from the experiment.

FIG. 6. Evolution vs indexl of the diagonal elements of th
matricesV,L,k,G obtained from five windows of the 16 simulate
coupled wakes with the coefficients obtained from the experim
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l r50.0567@~ t !21~A!22#, l i520.0795@~ t !21~A!22#.

In fact, the relevant parameters of Eq.~1! are normalized
and deduced from the latter,h5 gr /ar , c15gi /gr and c2
5 l i / l r . They can be compared to the ones determined
@14# and @12#,

h54.48, c1511.27, c2521.40.

Whereas the parameterc2 takes exactly the value obtained
@14#, there are noticeable differences with the results p
sented in@12#.

RECONSTRUCTION AND CONCLUSION

Using these values, the GLE model is simulated with
Euler integration scheme and shows in Fig. 5, a good ag
ment with the observed spatiotemporal chaotic behavior
particular, the extinctions of oscillators are recovered.
obtain a crude comparison between the simulation and
experiment, the largest positive Lyapunov exponent can
estimated in each case. The experimental one is equa
0.1760.02, which can be compared to the slightly smal
hy
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one 0.1360.02, calculated from the numerical simulation.
To analyze more specifically the chaotic experimental

havior, we compute and present in Fig. 6 the ‘‘spectra’’
five numerical simulations using the experimental coe
cients with different initial conditions. It can be observe
that they essentially overlap the experimental ‘‘spectra’’ a
that their global shapes are recovered. In particular, a g
agreement is exhibited for small indexed modes that are
most energetic ones. Also, we show here that the rema
experimental noise appears as a deviation in the ‘‘spectr
This is clearly visible forV r andG i , especially for the less
energetic modes~for large indices!.

We conclude that the experimental and the computed s
tiotemporal fields are nearly identical, their ‘‘spectral’’ sig
natures being the same. This proves that our invers
method, based on a biorthogonal decomposition applied
the proper mode space~the dispersion relation!, is able to
recover the values of the parameters of the model. As it u
a general projection procedure it can be implemented
other chaotic extended systems and associated models
consequently should lead to better analyses of experime
observations of space-time chaos.
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